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Introduction : fusion experiments 2

• Fusion experiments are complex 
interconnected systems

• A fusion plant requires safety 
protocols and 24/24 monitoring

• Magnetic fusion experiments 
operation mode is cyclic



▪ Fusion experiments are digital systems

• Computers control (nearly) everything

• Almost all measurements are voltages, 
currents, or (especially recently) images.

▪ IT is central to all fusion activities

• Diagnostics

• Actuators (heating, fueling, shaping, ...)

• Real-time control

• Data analysis

• Theory

Introduction : Fusion and IT 3



• Building a new diagnostic or actuator 
always requires advanced IT developments

• Identify control variables and integrate 
in TCVCS (TCV control system)

• Write drivers for equipment I/O

• Program state machine and 
synchronization

• Prepare structures for acquiring data

• Setup signal digitization

• Convert raw signals to physical 
quantities

• Integrate in post-shot analysis

Example : actuators on TCV 4



• Fusion experiments mix hardware and software, physics and engineering

-> IT must integrate this diversity

▪ Hardware and software development are part of the research effort

• This talk focuses on TCV

▪ 30 years of history, a remarkable mix of old and new technology

• Despite dozens of fusion research plants worldwide, there has been 
surprisingly little effort towards common IT solutions

• Control and data acquisition are increasingly intertwined

▪ We need to save control data (for analysis, ML, and future shots)

▪ We need to control data acquisition (setup, timing, …)

General remarks 5



▪ First Part

• Fusion experiment timeline

• Plant and plasma control

• Real time control

• Digitization & acquisition 

▪ Second Part

• Data processing

• Data organization, data access, outreach

• Data storage and backup

• Fusion IT environment

Outline 6



TCV Network topology 7
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Daily cycle : monitor vacuum, temperature, security, cryogenics, gyrotrons, …

Shot cycle : store energy (motor generator), design shot, load variables, 
synchronize systems, run, process data, …

Plasma phase : feedback (real time) control, high-speed acquisition

Fusion IT timeline 8



• Fusion experiments are based on shot cycles

• design (session leader) : plasma evolution, heating selection, diagnostics

• prepare (pdj, ddj) : control waveforms, equilibrium prediction, timing, gains

• load & arm (IT) : setup acquisition, load control variables into systems

• run (pilot) : plasma discharge, feed-forward and feedback (real-time) control

• read (IT) : transfer data from digitizers to server

• process (IT + physicists) : analysis chain to calculate physical quantities

TCV shot cycle 9
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Plant control 10

TCVPC is the TCV experiment state machine 
including core callbacks



▪ Pilot main interface

Plant & shot control 11



• TCV live database : VISTA CONTROL SYSTEMS

• Two main channel type :

• INput : updated upon read or periodically

• OUTput : callback upon update, includes use of “event”   

• Multiple servers with remote access

• Multiple databases

• Permissions per channel or per database

• Tools :

• Vdraw : control GUI

• Valarm : graphical and sound alarm

• Vscript : simple sequential language for “daemon” 

• Vlogger : storage of selected channels

• Vtrend : graphical tool for visualizing logged data

Control framework 12



• Example of out channels : TS gains

• Handler (callback) : C or fortran

▪ Access control : example

/vsys/crpppc282/db/TCV_PROTECTDB.access

DEFAULT: tcv_root=adefmnrwx, 

\default=erx, tcv_idj=werx, 

\ech_oper=werx, \tcv_oper=werx

GAS_OPER_ACCESS: tcv_root=adefmnr

wx, \default=erx, tcv_idj=werx, 

\tcv_oper=werx, gas_oper=werx

Note : channel-based access rights enabled

VISTA databases
13

! sparam1 : i2c server IP adress

! hparam1 : i2c server port

! value : initial value

! handler : callback function

! automatic : automatically write or read upon 

channel access

DEFINE CRPPSRV23_I2C

• sparam1 '10.27.128.209'

• hparam1 50000

• value 0

• handler_c i2c_handler

• ch_v3_function_style
• automatic

! hfunction : i2c handler function selection

! lowlim 0 : low limit
! hilim 7 : high limit

DEFINE SETHFGAIN_I2C

• integer out

• hfunction 1512

• lowlim 0 hilim 7

! hparam2 : i2c channel

! hparam3 : i2c address

$thomson:hf_gain:ch_060 SETHFGAIN_I2C CRPPSRV2

3_I2C hparam2 49 hparam3 40



• Alternative control framework : 

EPICS

▪ selected by ITER

▪ used at SPC (gyrotron test bed)

▪ Multiple compatible protocols

▪ Requires I/O drivers

Control framework 14



TCV control 15

• TCV uses a combination of central and distributed control systems

• Central systems : device control from central computer via slave/master protocol
(ex : BITBUS, RS232, MODBUS, I2C…)

central server converter/PLC/embedded PC

tcp-ip

client 

server/master

slaves

-> used to control and monitor low-speed equipment
(pump control, power supplies, gains, timing setup, etc)



Modern bus : Ethercat 16

EtherCAT (Ethernet for
Automation and Control

Technology)

• Ethernet based control fieldbus.

• short data update times (> 50 μs)
• low communication jitter (≤ 1 μs)

• reduced hardware costs.



Distributed (decentralized) control : autonomous subsystems with own state machine

• Independent subsystem control PC

(i.e. labview CODAC with NI PLCs)

• Advanced control protocols (OPC-UA)

• Control channel list exposed by server

• Secured communication

• Self-describing variables (objects)

TCV control 17



• Control a (limited) series of actuators through a combination of :

• Feed-forward control waveforms

• Feedback control by processing (real time) observations

• TCV may use thousands of observables to control a limited number of actuators:

• Toroidal and OH coils (Bt and Ip)

• Poloidal coils (plasma shaping)

• Gyrotrons (EC heating and current drive)

• Neutral beam injection systems (NBH and DNBI)

• Fueling systems (gas valves + MGI)

Plasma control 18



▪ Shot design interface : mgams

▪ Secondary systems : echcs, nbhcs, fueling, etc

Shot design 19



Analog real-time control 20



Digital real-time control 21



▪ Increasingly complex control algorithms 

• Equilibrium reconstruction (shaping)

-> real time liuqe

• ECRH beam tracing

-> real time torbeam

• Transport and current diffusion

-> real time RAPTOR

▪ Global platform for RT simulation 
and compilation using MATLAB/Simulink

▪ Global RT execution platform using MARTe2

▪ Deployment of AI-ML techniques 

-> complex events on very short timescales (disruption mitigation and avoidance)

Real time control : recent developments 22



Data lifeline 23
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• Causal analysis is essential in experimental plasma physics

• Tools dedicated to multi-signal time evolution comparison (i.e. dwscope, jScope)

• Ideally, synchronization precision must at least match acquisition rate

• For a long time, TCV sync precision was less than one microsecond 
(but better for signals acquired on the same ACQ unit)

• Better synchronization enables cross-correlation analysis from different diags

Timing and synchronisation 24



TCV legacy timing system 25

▪ Main time source = “Mother Clock” (MC):
• Bitbus slave generates mother clock signal and 1 MHz
• 65000 clock ticks limited by 16 bit counter on MC signal
• Slow (2 ms) period before and after the plasma phase
• Fast (50 us) period for refined timing during plasma phase

Courtesy of E. Carletti



▪ Excellent precision : < 1 ns !

▪ Fiber = no need for isolation

▪ D-TACQs (ACQ2106) shipped with WR

▪ Trigger times are programmed at endpoint level

▪ Inter-operable with legacy system

• 1MHz can be generated locally = synchro

White Rabbit Synchronisation 26



• Program acquisition modules (mdsplus Init action)

oModel tree (enable actions, set # of samples and frequency)

o Setup timers (WR or legacy)

• Arm acquisition modules

• Trig -> Run

• After shot, either :

oPush data from dtacq

o Send event for pulling data from central servers

oWait for postshot phase and pull from (mdsplus Store Action)

• Recent feature : share acquisition with RT systems

o Instead of splitting signals, combine streaming and writing into RAM

o Still some work to do… magnetic signals acquired 4 times...

Acquisition cycle 27



Magnetic Fusion acquisition rate examples 

• <1 Hz : monitoring

• 20-60 Hz : pulsed lasers (thomson scattering)

• 1 kHz : diags with large integration period

• 1 MHz : diags with short integration period

• 10 MHz : pulse shape processing

• 10 GHz : pulse reflectometry

->  different acquisition technologies required

Corresponding synchronization technology

• 1 – 10 ms precision : NTP (network time protocol, synchronisation)

• 1 μs : TCV MHz clock and legacy trig system

• 0.1 – 1 μs : PTP (precision time protocol, synchronisation + syntonisation)

• < 1 ns : White Rabbit (CERN), uses dedicated network hardware

Digitization 28



• Constraints

• Capture relevant time evolution

• Relevant amplitude variations

• Avoid saturation : gain controls (DDJ)

• Digitization specifications

• Rate

• Duration

• Resolution

• Dynamic range

• Differential or not

• Connectors

• Streaming capabilities ?

Digitization 29

CAMAC
-----

DTACQ



Ultrafast Acquisition Modules 30

Courtesy of L. Simons



Examples of ultrafast Acquisition Modules 31

RED PITAYA 250-12 TELEDYNE ADQ35



• The number of acquired samples might be limited by board RAM
▪ Compromise between sampling rate and acquisition window duration

• Acquiring useless data is detrimental (storage, I/O, backup, etc)
▪ Acquire only relevant diagnostics during relevant shot phases

• Acquisition windows and sampling rate can be set in ACQ GROUPS or directly in VISTA

Acquisition timers programming 32



Monitoring of data acquisition 33



… to acquire everything for as long as possible at the highest possible rate, and 
keep it forever

▪ Imagine 50’000 channels, acquired on 16 bit resolution, for 10s, at 1MHz

-> this is 1 TB of data for one shot ! 40 TB in one day…

• Can the network carry all this data between shots?

• Can we hold the data in one place?

• Can we process this data between shots?

• Can we back up the data overnight?

▪ Examples good practices :

• train of pulses -> keep peak amplitude and timestamp?

• Oscillating signals -> FFT and keep strongest/most meaningful features?

▪ FPGAs can help (process data between digitization and acquisition)

▪ Electronicians can help : pre-ACQ treatment of analog signals

Resist the temptation… 34



End of first part 35



▪ First Part

• Fusion experiment timeline

• Plant and plasma control

• Real time control

• Digitization & acquisition 

▪ Second Part

• Mdsplus : data storage and organization

• Data processing

• Data access, outreach

• Storage and backup

• Fusion IT environment

Outline 36



▪ Large number of time traces (signals) with 
different timestamps

▪ Shot-based acquisition

▪ MDSPlus : data storage in shot-based files

▪ Intrinsic language : TCL/TDI

▪ Built-in objects (signals, data with units)

▪ Built-in basic data processing

▪ On the fly data compression

▪ Video storage poses different challenges

-> favor single frame or full movie access?

Data storage : mdsplus 37



▪ Challenge : let authorized people in, keep everyone else out

▪ One powerful protocol : SSH (Secure SHell) 

• Ensures both authentication and encryption

• Tunable based on hosts, users, groups, etc.

• Passwordless key-pair authentication

• X11 forwarding

• Tunneling, proxy jumping

• Command execution, filtering

▪ Several virtual desktop systems (NX, VNC) use ssh (x2go, nomachine, thinlinc, …)

▪ MDSPlus remote data access is based on a IP protocol : mdsip

• Possibility to use in thin or thick client

• Can be encapsulated in SSH

Remote control and data access 38



▪ Read and store parameters beyond shot cycle. Ex : vessel pressure

▪ Heterogeneous data sources

▪ Data storage : shot -> day

▪ Solutions : 

• Vista Vtrend

• MDSplus segmented data

▪ Note : future experiments will combine high-frequency acquisition (physics does 
not slow down) with long durations… how will they manage? Who knows….

Monitoring 39

writeread



• Data analyses are interdependent

• One analysis can depend upon a number of raw 
data samples and anterior analyses

→ analysis chain

• Enforcing consistent causality means updates 
must be followed downsteam

• TCV solutions : anasrv

• calculations upon request

• calculation of upstream nodes if missing

• recalculation of downstream node if outdated

• Thinking of a forward solution

Data processing chain 40
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▪ Provenance is metadata tracking the analysis chain to a given dataset with the 
possibility to reconstruct the dataset identically 

▪ Essential provenance metadata includes :

• Electronic treatment tunable parameters (gains)

• Acquisition setup parameters (timing, precision, calibration, conversion)

• Raw and processed data chain of dependences

• Analysis codes versions

• Analysis codes tunable parameters

▪ Metadata also include :

• Data physical description

• Data samples for shot searching, grouping, etc
-> average, min/max, steps, ramps, coarse timegrid….

How many different TCV data subsampling systems do we have at SPC?

Data provenance and metadata 41



▪ TCV : trial indices, derived trees

▪ Essential when carrying out multiple shot analyses

▪ Must decide on default version (standard, latest, 
intelligent)

▪ Capacity to browse among versions -> annotations

▪ Complexity increases exponentially with the 
number of interdependent analyses

-> So far, a satisfactory global data versioning system 
is still missing at TCV

Data versioning 42



▪ Public funding imposes open data

▪ Delay to protect original work

▪ Meaningful data sharing is quite complex

▪ A&A : who can access what ?

▪ Data identification 
& definition

• Dictionary

• Metadata

• Ingestion

• Format 

• Search

• Access 

Data sharing - openscience 43

FAIR4FUSION
-> Eurofusion DMP



• Integrated Modelling and Analysis suite (IMAS)

• Interconnected software for ITER modelling

• Modular selection of components 

• Interface Data Structures (IDSs)

• Organised as tree structures

• Describe both experimental 
and modelling data

• Work for any device

• Describe plant systems 
and physics object

• Self-describing objects

• Information on provenance

Data structuration – linking theory and experiment 44

IMASViz



• The tokamak WEST has selected IMAS for experimental data storage organisation

IMAS data model 45

IMAS Data Model 3.34.0



▪ Findable : capacity to search through datasets with meaningful 
criterias/filters

▪ Accessible : A&A solution, API 

▪ Interoperable : Data definition, format

▪ Reproducible : provenance, versioning

▪ Are we there yet…?

• Findable? Logbook, alma database, IMAS summary IDS

• Accessible? Remote access servers, LDAP A&A

• Interoperable? Eurofusion DMP effort (IMAS) (3 years from now)

• Reproducible? Not systematically 

FAIR principles of data management 46



▪ Simultaneous code development by several people (and even several teams) can 
be a strong accelerator, but requires organisation and discipline

▪ An essential requirement is code versioning

• centralised systems : CVS, SVN

• distributed systems : GIT (gitlab, github)

▪ Verification, moderation, merging, and documentation of large codes are 
essential tasks that :

• Require a significant effort

• Fall on people with a deep understanding of the code (core developer)

• Are generally not provisioned by labs nor rewarded by the community

Code development and versioning 47



• SPC servers are attacked constantly

• When one protection fails, attack rates explodes

• Password strength
matters

• 2FA is effective

• Some essentials

• Set up firewall

• Enable selinux

• No root access with password (use SSH key pairs or su from user account)

• Enable fail2ban (delay or block following unsuccessful attempts)

IT security 48



• OS selection : rocky linux (centOS, fedora, …). Compromise stability vs update

• Filesystems : ext4, xfs, zfs

• Partitioning : GPT : boot (EFI), space management (/home, /var/log)

• Storage arrangement : RAID 0/10 (speed), RAID 5/6 (volume) 

• Invest in RAM : Swapping kills performance, FS caching is a powerfull feature

• Software : minimalist approach (faster, less maintenance, reduced risk of conflict)

• Redundancy of power supplies, network interfaces (bonding)

• Use UPS (Uninterrupted Power Suply)

• ILO/IDRAC : onboard chip accessible if server is down. Hardware survey, console

• Monitoring : Zabbix , Nagios

• Backup

Server administration 49



Zabbix IT park monitoring 50



Data storage technologies 51

technology speed capacity CHF/ TB

SD 25 MB/s < 0.25 TB 200

USB 3.0 80 MB/s < 4 TB 50

HDD 150 MB/s < 20 TB 15

SATA SSD 500 MB/s < 4 TB 50

NVMe SSD 2000 MB/s < 4 TB 50

Compare with network speed : 

• 100 Mbs : 11 MB/s

• 1 Gbs : 110 MB/s

• 10 Gbs : 1100 MB/s

• Fastest storage at TCV (SPR diag) : 4 x raid0 NVMe : 8GB/s (~RAM speed)



RAID array
Redundant Array of Independent Disks

RAID0 : stripping RAID1 : mirror RAID10 : combine RAID5 : parity

Fast but risky Safe but slow Fast and safe Fast (read)

but expensive and safe

Data storage arrangements 52



• To not back up data is an act of carelessness or… faith ?

• Important (and/or voluminous) data should be backed up at least twice

• If possible, in different buildings

• If possible, using different technology

• Different backup types

• Copies – archives – differential – incremental

• System restorable or not (DRM protection)

• Drive, partition, file backups

• Redundant systems (replication)

• Some remarks :

• Restore operations must be tested (including bootable full system restores)

• If the main drive is encrypted by malware, will the backup be impacted ?

• Think of all possibilities

Data backup 53



• IBM spectrum protect

• Secure (the client asks the server what to do, the server cannot access the 
client)

• Multi platform incremental backup

• Monitoring, alerts, …

• Replication : seamless synchronization with second server

• Deduplication : mark identical binary data blocks and save space

• Strategies : number of versions kept, delay to keep outdated objects

• Rsync : an amazing tool (coming out of a Ph.D. thesis) :  copies, backups, etc

• Atempo Lina : official EPFL solution 

Backup solutions used at TCV 54



SPC IT team

Christos                    Joan

Paraskevopoulos    Decker

Pierre                     Mateusz

Etienne           Gospdarczyk

Luke Simons Cenk Yildiz

• SPC wiki
https://spcwiki.epfl.ch/

• Redmine knowledge base (ticketing system)
https://spcsrv18.epfl.ch/redmine/

• EPFL Gitlab
https://gitlab.epfl.ch/

• SPC user web pages
https://crppwww.epfl.ch/~<username>/
https://crpplocal.epfl.ch/~<username>/

• IAEA meeting on Control, Data Acquisition and 
Remote Participation (every two years) 

For more information 55



Questions? 56



TCV network 57
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Virtual machines and containers 58
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